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ABSTRACT  

Long-distance ranging in existing coherent lidar techniques suffer from the coherence length of lasers. Here we present a 

coherent multi-tone continuous-wave (MTCW) lidar technique that performs single-shot simultaneous ranging and 

velocimetry with a high resolution at distances far beyond the coherence length of a CW laser, without frequency/phase 

sweeping. The proposed technique utilizes relative phase accumulations at phase-locked RF sidebands and Doppler shifts 

to identify the range and velocity of the target after a heterodyne detection of the beating of the echo signal with an 

unmodulated CW optical local oscillator (LO). The predefined RF sidebands enable ultra-narrow-bandwidth RF filters in 

the analog or digital domain to suppress noise and achieve high SNR ranging and velocimetry. Up-to-date, we 

demonstrated that the MTCW-lidar could perform ranging ×500 beyond the coherence length of the laser with <1cm 

precision. In a quasi-CW configuration, >1km ranging is realized with <3cm precision. Moreover, we incorporate 

machine-learning algorithms into MTCW-lidar to identify the reflections from multiple targets and improve the range 

resolution. Since relative phases of RF-sidebands are utilized for ranging, and common phase noises can be suppressed in 

signal processing, we show that the LO in heterodyne detection does not have to be the same laser source. Hence a separate 

free-running laser can be used. This approach paves the way for novel optical localization. To prove the concept, we 

present that a receiver with a free-running CW LO can determine its relative distance to a remote transmitter at 1.5km 

away with a <5cm accuracy.  

Keywords: Lidar, machine learning, optical reflection measurement 

1. INTRODUCTION  

Over the years, sensor fusion generated a tremendous amount of data that ordinary computational methods cannot 

handle1. Machine learning (ML) and artificial intelligence (AI) emerged as natural gateways to reduce data clogs and 

effectively utilize details that are overlooked in traditional methods2,3. While ML algorithms can now identify, sort, and 

route data without going through extensive observations, AI algorithms make decisions on the nature of data and act on 

them without human intervention4. Despite vast developments in AI and ML in other areas, optical lidar-based sensing 

technologies seldom utilize AI and ML algorithms for forestry and autonomous vehicle applications5–10.  

In particular, light detection and ranging (lidar) are investigated and implemented in real-life applications such as 

vehicle crash prevention, autonomous driving, forestry and oceanography, and precision measurements11–14. Various lidar 

techniques are developed, including direct light detection of laser pulse propagation that facilitates time-of-flight 

measurements15–18, as well as coherent detection via amplitude-modulated, phase-modulated, or frequency-modulated 

continuous-wave (CW) light19–22. The coherent lidars provide a detection scheme limited by the shot noise, hence 

improving the signal-to-noise ratio (SNR) of the detection and enhancing the precision of the measurements23. On the 

other hand, CW lidars rely on phase or frequency sweep of the light, which limits the potential single-shot operations for 

fast-moving platforms such as CubeSats or airborne lidars24. Even though the CW configuration enhances the range 

resolution and provides simultaneous velocimetry capability via the Doppler effect25, the CW lidars are hindered by the 

laser phase noise, which dictates the maximum detection range, in other words, the coherence length of the laser26.  

To remedy the aforementioned limitations to coherent lidars, we previously developed and demonstrated the phase-

based multi-tone continuous-wave (PB-MTCW) lidar, which can perform ranges far beyond the coherence length 

limitations27. In this technique, we split the output of a CW laser and amplitude modulate one arm with multiple phase-

locked radio-frequencies (RF), while the unmodulated branch is kept as a local oscillator (LO) for shot noise-limited 

heterodyne detection. In the echo signal, each RF tone accumulates a different phase with respect to the tone frequency 

and the target distance. Since the tones are embedded into the same optical carrier, it is possible to cancel out the common 

phase-noise components by RF mixing the individual detected tones with each other. Hence, the phase-noise-free terms 
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can be utilized via position triangulation algorithms by utilizing the plurality of the tone frequencies and tone phases28,29. 

Furthermore, similar to the other coherent lidars, the PB-MTCW technique can utilize the Doppler frequency shifts to 

compute the target velocity simultaneously with the ranging, as well. We have demonstrated that the PB-MTCW technique 

can perform ranging ×500 more than the coherence length of CW lasers with <1cm precision. The same technique is also 

used for clock-free localization of targets for autonomous vehicles. 

All of the developments in the lidar field mainly focus on one of the three measurable quantities: Amplitude, 

frequency, or phase20,30. Here, we hypothesize that by training an ML algorithm using all the aspects of the stable RF tones, 

which includes the phase, frequency, and amplitude information, it is possible to improve the measurement accuracy and 

provide a solution to multi-path interference and multi-surface reflections22,31. This hypothesis is true when a complex 

target geometry is placed in front of the beam. In this work, we show the enhancement of the PB-MTCW technique using 

ML algorithms and pattern recognition techniques. In particular, we develop ML algorithms that utilize all three 

measurable parameters to identify complex target structures. When the lidar aperture concurrently receives two multi-tone 

modulated echo signals from multiple surfaces in the same line of sight, the RF tones will realize amplitude variations due 

to light interference. These amplitude variations differ based on the target distances and tone frequencies. By utilizing the 

relative amplitude variations between the individual tones, it is possible to estimate the existence of multiple targets, as 

well as the distances of both targets, using the pre-trained ML algorithm. We demonstrate the capability of the technique 

with simulation and experimental results. We show that we can estimate the multi-path interference with 94% accuracy, 

and we can find the position of multiple targets with <5cm error. Similarly, the ML algorithm can verify the single 

reflection with >97% accuracy. Moreover, we illustrate that the ML algorithm yields an average mean square error of 

~1.1mm, hence enhancing the ranging accuracy of the PB-MTCW lidar. This approach has the potential to resolve one of 

the main challenges of existing lidar techniques, which is multi-path interference and to facilitate precise navigation and 

localization applications32.     

2. PHASE-BASED MULTI-TONE CONTINUOUS-WAVE LIDAR 

2.1 Concept 

 

Figure 1. Working principle of the Phase-Based Multi-Tone Continuous Wave lidar. 

The previously demonstrated Phase-Based Multi-Tone Continuous Wave lidar (PB-MTCW) technique involves 

modulating a continuous wave laser with multiple phase-locked radio-frequency tones each having a frequency of fi using 

a Mach-Zehnder modulator27. The accumulated phases of these tones are encoded in the echo signal after light propagation. 

Each modulation tone will accumulate a phase based on the target distance, Lm, and speed of light, c, as 

( )2 /range

i m iL c = , where ωi = 2πfi.  The received signal is then further interfered with by an unmodulated local 

oscillator (LO) to acquire the beat notes and realize a shot-noise limited detection. By utilizing the apriori knowledge of 

the selected tone frequencies, each tone is filtered with low bandwidth bandpass filters. The individual tones are further 

RF mixed with one another to yield the phase-noise-free intermediate frequencies (IF). Since there are multiple IF terms 

with particular phases, it is possible to triangulate the target position using the phase and frequency information of the 

resultant IFs as illustrated in Figure 1.  
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2.2 Theoretical Model 

Theoretically, the electric field (E-field) of the CW laser is formulated as 0 0 0exp( )laserE A j t j = + , where A0 =√Pout is 

the amplitude, ω0 is the optical carrier frequency and ϕ0 is the initial phase of the source laser. The laser is then split into 

two by a coupler with a β/(1-β) power splitting ratio. The unmodulated local oscillator is formulated as in Eq.(1) by also 

considering fiber attenuation (αf) and laser phase noise ( ( )n LOt − ), where LO  is the propagation time in the local 

oscillator branch. 

 
0 0 0exp( ( ))LO f n LOE A j t j j t     = + + −  (1) 

The E-field of the echo signal is presented in Eq.(2) after defining the linear attenuation coefficient (αm) related to the 

potential scattering, collection, and/or back coupling losses.  
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Here, 2 /mL c =  is the time of propagation and ( )n t −  is the laser phase noise related with τ that is when the laser 

beam first exists the MZM. Since the defined phase noise term is related to the carrier, the same noise term will be carried 

by every modulation frequency. The Em and ELO are combined via a Y-coupler and the photocurrent is achieved as

( ) ( )pd m LO m LOI R E E E E


= +  + . The final Ipd after the interference of the local oscillator with the echo signal from a 

stationary target is shown in Eq.(3), where the laser phase noise difference of Em and ELO is represented as 

( ), , ( ) ( )LO n LO nt t t      = − − − 33.   
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 (3) 

Using the resultant photocurrent, it is possible to extract the individual tones by applying narrow bandwidth bandpass 

filters centered at each frequency. Then, we can RF mix the filtered tones to annihilate the common phase-noise terms 

caused by the optical carrier.  After the RF mixing, two of these individual tones at ωi and ωj (i ≠ j) yields the IF expressed 

as ( ), ,cosi j i j i jA A t    , where ∆ϕi,j, and ∆ωi,j are the phase and frequency differences of ith and jth
 tones, respectively. 

The range of the target can further be defined as ( ), ,2 /m i j i jL n c  = +   , where n is an integer. The cyclic nature of 

the phase's modulo-2π behavior will result in periodic range estimation. To achieve accurate range information, it is 

necessary to have redundancy through the use of multiple agents, which is provided by the plurality of modulation tones. 

The solution of Lm for each ∆ωi,j should converge to a single value for a particular n. To find the common solution, we 

developed a triangulation algorithm that generates all the potential solutions for each IF by sweeping the integer values of 

n. Then we estimate the target range by acquiring the common solution for all IFs27,28.    
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2.3 Experimental Setup 

 

Figure 2. The PB-MTCW experimental setup. Mach-Zehnder Modulator (MZM), collimator (CL), beamsplitter (BS), and balanced 

photodetector (BPD). 

The experimental setup shown in Figure 2 is used to measure the range of a static target. A CW laser with a <100kHz 

linewidth at 1064nm (RPMC Lasers - R1064SB0300PA) is modulated using an MZM (iXblue – NIR-MX-LN series), 

which is optimized for 1064nm and has a 30dB extinction ratio, with four frequencies at 300, 500, 890, and 1350MHz. 

These frequencies are carefully selected to prevent overlap or second harmonic mixing. The tones are generated by phase-

locked RF synthesizers (Windfreak Technologies - SynthHD (v2)) and triggered by a 10MHz common clock that also 

triggers the oscilloscope. The target reflector is placed on a motorized translational stage, and the target is moved in 2cm 

steps on the stage during multiple trials. The modulated light is transmitted to the free space using a (CL) and coupled 

back to another collimator for collection. The collected signal interferes with the LO through an optical Y-coupler. The 

final light signal is split into two and fed to a high-speed balanced photodetector (BPD) (PDB482C-AC), which has a 

bandwidth of 2.5GHz and a noise equivalent power of 12pW/Hz1/2. The initial tone phases are measured at the output facet 

of the MZM to calibrate the lidar. The post-processing algorithm uses the measurement taken at the calibration mirror as 

the zero point for the lidar system before taking actual measurements of the target. For acquisition, a digital storage 

oscilloscope is used by setting the time window to 100μs with a 10GS/s sampling rate that yields a time resolution of 

0.1nm. Time resolution dictates the range resolution, δL, which is defined by the minimum distinguishable phase of the ith 

tone, dϕi, as /i iL c d c dt  =  =  . It is possible to formalize the minimum theoretical resolution by considering a 

noise-free case, where i id dt =  , and hence L c dt =  , where dt is the time resolution. In the case of the 

experiment, the theoretical minimum resolution is ~3cm without any further post-processing. The target ranges are first 

computed using the triangulation algorithm after extracting the phase and frequency of the IF tones. Then the extracted 

tone information is introduced to the ML algorithms to estimate the target range. Subsequently, the PB-MTCW lidar 

measurements, actual target ranges, and the results of the ML algorithms are compared.  

3. MACHINE LEARNING ALGORITHM 

After extracting the phase and frequency of the IF tones, we formulate the distance estimation problem based on a basic 

regression model, mapping a time-series input to a value, to emphasize the relationships between the PB-MTCW and 

distance. For the proposed basic regression model, the input and output pairs of the ML model are defined as follows. 

During training, each sample is labeled with the true distance values obtained using the triangulation algorithm. The input 

of the model is the phase and frequency of IF tones which are extracted as mentioned above.          

We denote the extracted phase and frequency values at a point as (𝜙, 𝜔) where 𝜙 represents the vector formed by the 

phase values and 𝜔 is the number of used tones. The true distance value is denoted as L and obtained by the triangulation 

algorithm. The designed ML model is parametrized by Φ and the overall regression is given in Eq.(4) where the 𝐿̂ is the 

estimated distance value of the target using the input and model parameters. While training the model, we used the L1 

loss, which is also known as Mean Absolute Error, and try to minimize the error between model output, 𝐿̂, and the true 

distance of the target, L. During the test, the task is to estimate the true distance L given the extracted phase and tone pairs  

(𝜙, 𝜔)  of a sample using the trained model 𝑓 with parameters Φ, which is shown in Eq.(4). For differentiating the number 

of targets, the input pair is changed to the magnitude with frequency tones instead of phase. And, the cross-entropy loss is 

used instead of L1. 
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The designed regression model takes as input only the phase and frequency tone pairs, and no other raw signal- or 

system-related features such as the magnitude, or reflection coefficient information are not used in the model to estimate 

the distance of the target.                                                           

 ( ), ,L f  =   (4) 

The regression model has composed of three main layers; the first layer is the input layer and has the twice number 

of units with the extracted phase values (the phase values and the frequency tones are concentrated horizontally before 

feeding to the ML model). The second layer is consisted of two hidden layers, which have 256 and 128 units, respectively, 

and are utilized for extracting features from the input pair. The last layer of the model is the output layer and gives the 

estimated distance. The network was trained with Glorot initialization of the weights34. L2-regularization with 0.001 is 

applied for each dense layer to prevent overfitting. We used the Adam optimizer35 with the default parameters ß1 = 0.9 and 

ß2 = 0.999, and a mini-batch size of 120. The learning rate is initialized to 0.002 and reduced by a factor of 10 when the 

validation mean squared error stopped decreasing for 75 consecutive epochs. The training continues until 100 successive 

epochs without validation performance improvements with a maximum of 900 epochs. The best model is chosen as the 

lowest loss on the validation data. In general, the hyperparameters of the network architecture and optimization algorithm 

were chosen by manual tuning. We searched essentially over the number of hidden layers and units to find the best model 

for the estimation. 

The evaluation of the ML model is performed on all recorded data without modifying or changing the hyperparameters 

of the model. The only modification is made for input when the model is try to differentiate whether there are 2 targets or 

a single target as mentioned before. To evaluate the generalization capability of the trained model, we used the leave 

distance-out cross-validation, similar to leave-one-out-cross-validation (LOOCV36). The used validation method ensures 

that the trained ML model is capable of generalizing the target distance values which have not been seen by the model 

during the training. For example, during the training, the model only observes the phase values corresponding to the 

distances 10-11cm. And, for the inference (test), the phase values at the distance of 10.5cm are fed to the model. In this 

way, we have followed a principled approach to evaluate the performance of the proposed method. 

In the next section, we report our scores of single, non-repeated experiments where the training and validation splitting 

are performed randomly. 10% of training records were used for validation to implement early stopping based on the 

validation loss to prevent overfitting. Different percentages are also used while partitioning the validation and training 

data. However, the best performance has been observed for the 10% of the data for validation and 90% for the training. 

4. RESULTS 

We performed an extensive set of experiments to test if the proposed method performs well in estimating the target distance 

values. These tests aimed to evaluate the performance measures and the model's capabilities, in terms of noise level and 

target distances. The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSD) are used as metrics to evaluate 

the target distance estimation performance. The metrics are calculated using the estimation values, 𝐿̂, and the true distance 

of the target, L, which is obtained by triangulation. The calculation of MAE is shown in Eq.(5) . 

 1

n

i l

i

L L

MAE
n

=

−

=


 (5) 

To evaluate the model’s performance comprehensively, we changed the distance range of the target, the number of 

tones with different tone values, and the noise factor. Overall, we performed 3 main experiments which are as follows. 1) 

Noisy single target distance estimation, 2) Noisy double target differentiation with distance estimation and 3) single target 

lab environment distance estimation.  

For the tone frequency variations, we chose 3 pairs which are Tones1 = [20MHz, 500MHz, 700MHz, 850MHz, 

950MHz], Tones2 = [500 MHz, 700 MHz, 850 MHz, 950 MHz], Tones3 = [700MHz, 850 MHz, 950 MHz, 1050 MHz]. 

By choosing the different number of tones with values, we rigorously evaluated the performance of the machine learning 

model on the task. Moreover, we have changed the L1 and L2, which are the target distance values, with the reflection 

coefficients of targets. The following three tables summarize the results of our experiments. 

 

Proc. of SPIE Vol. 12438  124380H-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 17 Dec 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 

 

 

 

Table 1. The estimation errors of the trained ML model for a single target, the first case of the evaluation scheme, evaluated at three 

different tones with three separate distances. 

 

Table 1 shows the average estimation error with standard deviations of the ML regression model that is trained 

with three different tones which are mentioned before. It can be seen from the data in Table 1 that the proposed ML model 

with feature extraction can estimate the target distance with high performance. The best performance, which is the average 

mean error of 0.002 cm, is obtained when the model is trained and evaluated with Tones3. Whereas the model’s performance 

decreases by ~10x when it is trained with first tone combinations, which shows the importance of tone selection. 

Table 2. The estimation errors of the trained ML model for the first target of the double target, the second case of the evaluation scheme, 

evaluated at three different tones with three separated distances. 

 

Table 3. The estimation errors of the trained ML model for the second target of the double target, the second case of the evaluation 

scheme, evaluated at three different tones with three separated distances. 

 

Tables 2 and 3 show the performance of the model for the case when there are two targets. Therefore, we first evaluated 

the model’s performance for differentiating the number of targets. If the model outputs a single target prediction and there 

are two targets, we predicted the distance of the first target, and the second target error is reported. In other words, the 

prediction distance for the second target, 𝐿̂2, is set to zero while no modifications have been applied to true distance values. 

Therefore, the estimation performance of the trained ML models for the double target decreases compared to the single 

case as can be seen in Tables 1,2, and 3. 

When we evaluated the trained model in the classification performance of the number of targets, the accuracy of the 

classifier is  %94±0.7. While evaluating the model, we changed the first and second target distances from 0.1-3 m to 3.1-

10 m, respectively. The performance comparison between the Tones, however, has not changed. In other words, when we 

investigated the performance of the different Tones, we can see that Tones1 gives the worst result in target distance 

estimation. This consistency between different experimental setups shows that the ML model’s performance is 

significantly affected by the extracted phase and magnitude values from the pre-processing.  

Additional to the overall results (shown in the above tables), we plotted the estimation performance of the ML models 

against expected distances with two different tones as shown in Figure 3.   

Tones / L1 (m) 0.1-3 0.1-5 0.1-10 

Tones1 0.0027 ± 0.003 dm 0.0041 ± 0.004 dm 0.0085 ± 0.005 dm 

Tones2 0.0029 ± 0.0002 dm 0.0030 ± 0.001 dm 0.0035 ± 0.002 dm 

Tones3 0.0013 ± 0.0001 dm 0.0002 ± 0.001 dm 0.0002 ± 0.001 dm 

Tones / L1 (m) 0.1-1 0.1-2 0.1-3 

Tones1 0.016 ± 0.05 dm 0.023 ± 0.03 dm 0.031 ± 0.03 dm 

Tones2 0.012 ± 0.04 dm 0.014 ± 0.04 dm 0.030 ± 0.04 dm 

Tones3 0.006 ± 0.05 dm 0.009 ± 0.001 dm 0.0015 ± 0.001 dm 

Tones / L2 (m) 3.1-5 3.1-7 3.1-10 

Tones1 0.025 ± 0.003 dm 0.029 ± 0.005 dm 0.045 ± 0.004 dm 

Tones2 0.0053 ± 0.002 dm 0.0067 ± 0.002 dm 0.0071 ± 0.002 dm 

Tones3 0.0041 ± 0.001 dm 0.0047 ± 0.001 dm 0.0055 ± 0.003 dm 
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Figure 3. The estimation errors of the trained ML model for different points. A) The case where Tones2 is used for both training and 

testing. B) The case where Tones1 is used for training and testing the ML model. 

Figure 3 shows the error rate of the ML model for the target distance estimation. The purple line in both graphs 

represents the perfect estimation case where the error is equal to 0, 𝐿̂ = L. The black line is drawn with the true target 

distances against the estimation of the trained ML model. The (a) and (b) plots in Figure 3 show the effect of tone selection 

on the estimation performance. As shown in this Figure, when Tones1 is used for training and testing the ML model, the 

overall estimation performance decreases by ~ 3x, where this value is higher in long distances. Although this slight 

degradation in the Tones1 is an expected outcome, it can be explained if the frequencies are investigated. In Tones1, the 

first frequency is 20 MHz which is quite low compared to the frequency contents in other tone vectors. Therefore, a 

performance decrease is observed for this specific tone content. 

Lastly, the trained model is evaluated according to scheme three, which is the single target lab environment distance 

estimation. A small difference between the last experiment and the other two simulations, we had to use a single Tone 

vector, which has 3 frequencies, 500 MHz, 700 MHz, and 950 MHz, during training and testing. The overall estimation 

error for the last scheme is 0.013 ± 0.01 dm. The major drawback of the third experimental setup is that it requires extensive 

data collection for training the ML model as the modeling system with machine learning is data-hungry. This drawback 

limits the extensive experimentation of the model’s performance. Therefore, we believe that new solutions should be 

proposed to train ML models for similar experimental setups. 

5. CONCLUSION 

This paper introduces the enhancement of the PB-MTCW lidar technique using extracted phase information from different tones. To 

evaluate our proposed method, we have collected real data with simulations and utilized principled cross-validation for evaluating the 

Machine Learning model. Our results show that the proposed method predicts the distance in three training schemes with an overall 1.1 

mm MSE error. 
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